Linear systerns

In this section, $X$ is a nonsingular projective variety over $k=\bar{k}$. In this setting, all weil divisors are Cartier, so linear equiv. classes of Well divisors are in correspondence with isom. classes of invertible sheaves. i.e.

$$
C I X \cong \operatorname{PiCX}
$$

We will see that given any divisor $D$, we have another important correspondence:

$$
\left\{\begin{array}{l}
\text { effective divisors } E \\
\text { s.t. } E \sim D
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
\left.\left.\begin{array}{l}
x_{x}^{0} \\
S \in \Gamma(x, \theta(D)) \\
\bmod \text { scaling }
\end{array}\right\}, ~\right\} ~
\end{array}\right.
$$

Def: Let $\mathcal{L}$ be an invertible sheaf on $X$ and $s \in \Gamma(X, \mathcal{L})$. The divisor of zeros of $s, \quad(s)_{0}$, is defined as follows: let $\left\{U_{i}\right\}$ be an open cover of $X$ s.t. $\mathcal{L} \|_{u_{i}}$ is trivial, and fix isomorphisms

$$
\varphi_{i}:\left.\mathcal{L}\right|_{u_{i}} \cong \sigma_{u_{i}}
$$

Set $s_{i}=\varphi_{i}(s) \in \Gamma\left(u_{i}, \Theta_{u_{i}}\right)$, and $(s)_{0}=\left\{\left(u_{i}, s_{i}\right)\right\}$.

We need to check that $(s)_{0}$ is actually a divisor. ie. we need that $s_{i} / s_{j}$ is regular (and a unit) on $U_{i} \cap U_{j}$. Consider the diagram below:

since this is an isomorphism, $s_{j}=u s_{i}, u$ a unit. Thus,

$$
s_{i} / s_{j} \in \theta_{x}^{*}\left(u_{i} \cap u_{j}\right) .
$$

Thus, $(s)_{0}=\left\{\left(u_{i}, s_{i}\right)\right\}$ defines a divisor, which is effective, since each $s_{i}$ is regular on $u_{i}$.

Now we can prove the correspondence mentioned above:

Prop: Let $D$ be a divisor and $y=\sigma(D)$.
(a.) If $s \in \Gamma(X, \mathcal{L})$ nonzero, then ( $s)_{0} \sim D$.
(b.) If $E$ is an effective divisor s.t. $E \sim D$, then $E=(s)_{0}$ for some $s \in \Gamma(X, \mathcal{L})$.
(c.) Let $s, s^{\prime} \in \Gamma(x, \mathcal{L})$. Then $(s)_{0}=\left(s^{\prime}\right)_{0} \Longleftrightarrow s^{\prime}=\lambda s$ for some $\lambda \in k^{*}$.

Thus, we get the correspondence described above.

Pf: @.) $D$ is a Cartier divisor, so we can write

$$
D=\left\{\left(u_{i}, f_{i}\right)\right\}
$$

Then $O(D)$ is a subsheat of $K$, so $s \in K^{*}$

On each $u_{i},\left.O(D)\right|_{u_{i}}=\frac{1}{f_{i}} \Theta_{u_{i}}$. So we get isomorphisms

$$
\varphi_{i}:\left.\sigma(D)\right|_{u_{i}} \xrightarrow{\cdot f_{i}} \sigma_{u_{i}}
$$

Thus, $(s)_{0}=\left\{\left(u_{i}, s f_{i}\right)\right\}=D+(s)$, so (s) $-D$ is principal and thus (s) $\sim D$.
(b.) $E \sim D \Rightarrow E=D+(f)$ some $f \in K^{*}$. In particular, $D+(f)$ is effective, so by definition, $f \in \Gamma(x, O(D))$, and by the construction in part (a.), $E=(f)_{0}$.
(c.) If $(s)_{0}=\left(s^{\prime}\right)_{0}$, then by part (a., we can think of $s, s^{\prime} \in K^{*}$. Thus, using the above construction, we have local isomorphisms

$$
\varphi_{i}:\left.\mathcal{L}\right|_{u_{i}} \xrightarrow{\cdot f_{i}} \sigma_{u_{i}}
$$

so on each $u_{i},\left(s f_{i}\right)=\left(s^{\prime} f_{i}\right) \Rightarrow\left(s / s^{\prime}\right)=0$.

$$
\operatorname{since}\left(5 / s^{\prime}\right) \text { and }(5 / 5) \geq 0
$$

Thus, $\left(s / s^{\prime}\right)=0$ globally, so $s / s^{\prime} \in \Gamma\left(x, \theta_{x}^{*}\right)=k^{*}$.
Since $x$ is a prog. variety

Ex: let $P=[0: 1] \in \mathbb{P}$. Then $O(P) \xrightarrow{\cdot x} O(1)$. We can also describe $P$ as the locally principal divisor

$$
P=\left\{\left(\operatorname{spec}_{" 1} k\left[\frac{y}{x}\right], 1\right),\left(\operatorname{spec}_{\prime \prime} k\left[\frac{x}{y}\right], \frac{x}{y}\right)\right\}
$$

Thus, $\left.\sigma(P)\right|_{u_{1}}=\sigma_{u_{1}}$, and $\left.\sigma(P)\right|_{u_{2}}=\frac{y}{x} \sigma_{u_{2}} \xlongequal{\cong} \frac{\cong}{\leftrightarrows} \sigma_{u_{2}}$
Take the global section $2 x+y \in \Gamma\left(\mathbb{P}^{\prime}, \sigma(1)\right)$.

This corresponds to $S=\frac{2 x+y}{x} \in \Gamma\left(\mathbb{P}^{\prime}, \sigma(P)\right) \subseteq K^{*}$.

So $s_{1}=2+\frac{y}{x} \in \Gamma\left(u_{1}, \sigma_{u_{1}}\right)$, and

$$
S_{2}=\frac{x}{y}\left(\frac{2 x+y}{x}\right)=\frac{2 x}{y}+1 \in \Gamma\left(u_{2}, \theta_{u_{2}}\right)
$$

Globally, this corresponds to the point w/ homogeneous eqn $2 x+y$, as desired, i.e. $[1:-2]$.

Def: A complete linear system on $X$ is the set of all effective divisors linearly equivalent to some given divisor $D$, denoted $|D|$. By the Prop, $|D|$ is in one-to-one correspondence $w / \mathbb{P}(\Gamma(X, \sigma(D)))$.

A linear system on $X$ is the set of divisors corresponding to $\mathbb{P}(V)$, where $V \subseteq \Gamma(X, \theta(D))$ is any subspace.
(All the dimensions are finite since $\Gamma(x, \sigma(D)$ is a f.d. $k$-vector space.)

Ex: If $L \subseteq \mathbb{P}_{k}^{2}$ is any line, then

$$
|L|=\left\{\begin{array}{c}
\text { effective divisors } \\
\text { of degree one }
\end{array}\right\}=\left\{\text { lines in } \mathbb{P}^{2}\right\}
$$

of course these correspond to

$$
\mathbb{P}\left(\Gamma\left(\mathbb{P}^{2}, \sigma(1)\right)\right)=\{a x+b y+c z\} / k \cong \mathbb{P}^{2}
$$

If we take $V \subseteq \Gamma\left(\mathbb{P}^{2}, \theta(1)\right)$ to be lines through $[0: 0: 1]$, then $V=\{a x+b y\} / k \cong \mathbb{P}$, an incomplete linear system.


Note that in this example, all the sections of $V$ vanish at $[0: 0: 1]$. This is called a base point. More generally:

Def: $P \in X$ is a base point of a linear system $\delta$ if $P \in \operatorname{Supp} D$ for all $D \in \delta$. If $\delta$ has no base points, it is base-point-free. Equivalently, if $V \subseteq \Gamma(x, \mathscr{L})$ is the corresponding subspace, $P$ is a base point iff $S_{p} \in m_{p} \mathcal{L}_{p}$ for all $\delta \in V$. In particular, $\delta$ is b.p.f iff $\mathcal{L}$ is generated by $V$ (or a basis of $V$ ).

Thus, a morphism from $X \rightarrow \mathbb{P}^{n}$ is equivalent to a b.p.f.
linear system on $X$ and a spanning set $s_{0}, \ldots, s_{n} \in V$.

Remark: If $\delta$ is a b.p.f. linear system corr. to $V$, then the morphism corr. to $\delta$ is the one determined by $a$ basis of $V$. Any other morphism will differ by an automorphism of $\mathbb{P}^{n}$

Geometric intuition: If $\varphi: X \rightarrow \mathbb{P}^{n}$ is determined by the b.p.f. linear system $\delta$, the divisors in $\delta$ are the pull-backs of hyperplanes in $\mathbb{P}^{n}$

Ex: Let $V=s p a n$ of $s^{3}+t^{3}, s^{2} t, s t^{2}$ in $\Gamma(x, \theta(3))$

$$
\begin{aligned}
& \varphi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{2} \\
& {[s: t] \longmapsto\left[s^{3}+t^{3}: s^{2} t: s t^{2}\right]}
\end{aligned}
$$

A hyperplane $a x+b y+c z$ in $\mathbb{P}^{2}$ pulls back to the zew set of $a\left(s^{3}+t^{3}\right)+b\left(s^{2} t\right)+c\left(s t^{2}\right)$, a section in $V$.

Notice that if $[0: 1]$ is a zew of a section of $V$, then $a=0$, so $[1: 0]$ is a section as well. That is, any hyperplane Through $\varphi([0: 1])$ also contains $\varphi([1: 0])$. i.e. the $y$ have the same image $\Rightarrow \delta$ doesn't separate points


Ex: Let's look again at the cuspidal cubic:

$$
\varphi:[s: t] \longmapsto\left[s t^{2}: t^{3}: s^{3}\right]
$$

Any section vanishing at $[1: 0]$ is of the form $a s t^{2}+b t^{3}=t^{2}(a s+b t)$

which has corresponding divisor $2[1: 0]+[-b: a]$. i.e. no section vanishes to order 1 .

What is happening here?

Consider an affine open $z=1$, containing the cusp. It intersects $w /$ the curve in Spec $k[x, y] /\left(x^{3}-y^{2}\right)$.
set $m=(x, y)$, corresponding to the cusp. Then

$$
m / m^{2}=(x, y) /(x, y)^{2}
$$

is two dimensional. i.e. every line through the point is tangent to the curve at that point.

We can rephrase the conditions for when $\varphi$ is a closed immersion in terms of linear systems:

Prop: If $\delta$ is b.p.f. and induces $\varphi: X \rightarrow \mathbb{P}^{h}$, then $\varphi$ is a closed immersion $\Leftrightarrow$
(1.) If $P, Q \in X$, there is $D \in \delta$ sit. $P \in \operatorname{supp} D, Q \notin \operatorname{Supp} D$, and $V_{\text {closed bes }}$
(2.) If $P \in X, \quad t \in T_{p}(x)=\left(m_{p} / m_{p}\right)^{v}$, then there's $D \in \delta$ s.t. $P \in \operatorname{Supp} D$, but $t \notin T_{p}(D)$. ie. there is some divisor $D$ containing $P$ st. $t$ is not tangent to $D$ at $P$.
 $X=\operatorname{spec} k[t]$, and for any divisor $D$ containing $P=$ the origin,

$$
D=\operatorname{spec}^{k[t]} /\left(t^{2}(a+b t)\right)
$$

So $T_{p}(D)=\left((t) /(t)^{2}\right)^{v}=T_{p}(x)$, so it doesn't satisfy (2.).

Ex: $X=$ blowup of $\mathbb{P}^{2}$ at $[0: 0: 1]$. i.e.

$$
X=\left\{(p, l) \in \mathbb{P}_{\left.\substack{2} \underset{\sim}{\mathbb{P}^{1}} \mid p \in l\right\}}^{\text {lines }} \underset{\text { through }}{[0: 0: 1]}\right.
$$



If the $\mathbb{P}^{2}$ has homog. coordinates $[x: y: z]$ and the $\mathbb{P}^{\prime}$ has coords $[s: t]$, then $X$ is defined by $x t-y s$ in $\mathbb{P}^{2} \times \mathbb{P}^{1}$. $X$ has three "obvious" maps to projective space:
(1.) Projection $\Pi: X \rightarrow \mathbb{P}^{2}$, the "blowing down". $\pi$ is an isomorphism away from the origin, and fiber over origin $=\mathbb{P}!$

It is given by $\mathcal{L}=\pi^{*} \sigma_{\mathbb{R}^{2}}(1)$, along $w /$ global sections $x, y, z$.

The linear system is the pull back of all lines. e.g. if $L_{\infty}=V(z)$ in $\mathbb{P}^{2}$, Then it pulls back to $\tilde{L}_{\infty}$, an irreducible line in $X$.
But $L_{x}=V(y)$ (the $x$-axis in the chart
Spec $k[x / z, y / z])$ pulls back
to $E+\tilde{L}_{x}$, the sum of $E$, the exceptional divisor, and the closure of the generic point of $L_{x}$ on $X$ (check details here!). This linear system is denoted $\left|\pi^{*} H\right|$.
2.) Projection $x \rightarrow \mathbb{P}$, given by an invertible sheaf $M$ and sections $s, t$. The linear system consists of lines corresponding to the fibers of the projection.
e.g. The section $b s-a t$ of $\Theta_{p l}(1)$ (which defines the pt $[a: b]$ ) pulls back to the section bs-at of $M$ whose divisor of zeros is the live $([a: b],[a: b: z]) \subseteq X$.


The linear system is $\left|\tilde{L}_{x}\right|=\left|\pi^{*} H-E\right|$.
(3.) The composition of

$$
X \hookrightarrow \mathbb{P}^{2} \times \mathbb{P}^{\prime} \underset{\uparrow}{\hookrightarrow} \mathbb{P}^{5}
$$

segre embedding
corr. to inv sheaf of type $(1,1)$.

This is given by a very ample invertible sheaf $N$ and global sections $s x, s y, s z, t x, t y, t z$ (monomials of bi-degree $(1,1)$ ). The corresponding linear system is $\left|2 \pi^{*} H-E\right|$. Note that $s y=t x$, so this maps into a hyperplane in $\mathbb{P}^{5}$. Think through the details of this!!?

